Künstliche Intelligenz - einfach programmieren?

Unbequeme KI-Wahrheiten

Kommentar  10.09.2019
Von   


Branimir Brodnik schreibt als Experte zu Sourcing-Themen in der IT in Zeiten von Cloud und Digitalisierung. Er ist Gründer und geschäftsführender Gesellschafter der microfin Unternehmensberatung GmbH und weist eine über 20-jährige Berufserfahrung in den Bereichen Financial Services und Consulting auf.
Künstliche Intelligenz ist keineswegs eine "Geheimwissenschaft", die demjenigen Ruhm und Ehre verspricht, der sie entschlüsselt. Das sollten Sie über KI wissen.

Bei Licht betrachtet wird auch im Rahmen der KI-Revolution nur mit Wasser gekocht - weswegen der Einsatz der Technologie wie jedes andere IT-Projekt behandelt werden muss. Dafür sprechen folgende, nüchterne Fakten und Erkenntnisse.

Sich Künstlicher Intelligenz zu entziehen, ist nicht mehr möglich. Beim Umgang mit dem Zukunftsthema hilft allerdings eine realistische Einschätzung.
Sich Künstlicher Intelligenz zu entziehen, ist nicht mehr möglich. Beim Umgang mit dem Zukunftsthema hilft allerdings eine realistische Einschätzung.
Foto: Roman3dArt - shutterstock.com

KI heißt nicht Disruption

Sicher: Alexa und Co. sind spektakuläre "Game Changer", die erst durch Künstliche Intelligenz möglich wurden. Die meisten Anwendungen sind aber vergleichsweise "langweilige" Fälle, in denen bestehende Prozesse verbessert und effizienter gemacht werden, etwa in der automatisierten Verarbeitung von Transaktionen. Es ergibt also wenig Sinn, auf "die eine großartige Idee" zu warten und in der Zwischenzeit die bereits verfügbaren Vorteile brachliegen zu lassen.

Künstliche Intelligenz braucht Training

Wer als Kind Klavier spielen gelernt hat, weiß: Expertise entsteht durch Training. Bei KI-Lösungen ist das nicht anders: Das Wissen wird nicht in die Technologie "hinein" programmiert - es entsteht und wächst durch das Training mit Daten. Ohne geeignete Daten und geduldiges Üben entsteht keine nützliche Intelligenz, sondern nur künstliches Halbwissen und falsche mathematische Modelle. Hinzu kommt, dass gute Resultate auf der Grundlage von Trainingsdaten nicht auch zwingend zu guten Resultaten in der Praxis führen.

Die Grenzen des KI-Wachstums

Drei der wichtigsten technologischen Grundlagen für Künstliche Intelligenz sind heute gegeben: Big Data, Cloud Sourcing und die nötige Rechenleistung. Das aktuelle Wachstum im KI-Bereich bildet aber auch eine Art "Nachholeffekt" ab, weil bisher ungenutzte Daten und Ressourcen jetzt zum Einsatz kommen und eine Massenverarbeitung sogar in Echtzeit möglich ist. Allerdings hemmen rechtliche Fragen, zum Beispiel wenn es um die Urheberrechte an den Trainingsdaten geht, ein noch schnelleres Wachstum.

Künstliche Intelligenz bleibt ein Nischenthema

Düstere Visionen, in denen AI-Instanzen Menschen überflüssig machen, sind immer noch in Mode. Tatsache ist jedoch, dass Künstliche Intelligenz - Stand heute - ein Fall für spezielle Use Cases ist. Bei einzelnen Aufgaben, etwa der Risk & Fraud-Mustererkennung im Bankensektor, ist die Technologie dem Menschen bereits deutlich überlegen. Laut einer aktuellen Bitkom-Umfrage nutzen heute zwei Prozent der etablierten Unternehmen KI im Rahmen ihrer Prozesse. Im Startup-Umfeld liegt dieser Wert sogar bei 39 Prozent. Mit einer ubiquitären Ausbreitung von KI-Lösungen ist jedoch aufgrund des Mangels an fähigen Experten nicht zu rechnen. Hier wird man eher in Generationen denken müssen.

KI meets "Do It Yourself"?

Auch wenn manche Anbieter es anders darstellen: Künstliche Intelligenz und maschinelles Lernen sind und bleiben hochkomplexe Themen - es gibt zu viele Disziplinen und zu viele hochspezialisierte Lösungsansätze. Die Übersicht über die Fülle der Algorithmen in diesem Bereich zu wahren, ist selbst für Spezialisten kaum noch möglich. Natural Language Processing etwa folgt anderen Regeln als zum Beispiel die Objekterkennung in Bildern. Für Laien ist die Materie völlig undurchschaubar, weshalb eine einfache, schnelle "Umprogrammierung" im Do-It-Yourself-Verfahren nicht in Betracht kommt.

Den KI-Tausendsassa unter den Anbietern wird es aller Voraussicht nach nicht geben - dafür ist die Materie wie erwähnt zu komplex. Stattdessen sind Strukturen im Markt zu erwarten, wie sie aus anderen Disziplinen der IT bekannt sind: Spezialisten kümmern sich um einzelne Disziplinen wie Fraud Detection, Bildanalyse oder Sprachverarbeitung.

Künstliche Intelligenz by Design

"Für unseren KI-Use-Case gibt es noch keine Softwarelösung" - diese Ausrede funktioniert heute kaum noch. Sowohl große Anbieter wie IBM, Microsoft oder NVIDIA als auch Open Source Frameworks wie Tensorflow sind bereits verfügbar und erleichtern den Einsatz von Künstlicher Intelligenz und auch deren Integration in bestehende IT-Infrastrukturen signifikant. Dabei gilt es zu beachten: Auch wenn der Zugang zu Standard-KI-Funktionen hierdurch erleichtert wird, ist nicht garantiert, dass diese Funktionen im Business-Prozess den erwarteten Nutzen und die erhoffte Qualität erbringen.

Auch ohne dezidierte KI-Anwendungen ist es bald nicht mehr möglich, die Technologie aus der IT herauszuhalten. Künstliche Intelligenz steckt immer öfter im Kern von Anwendungen aller Art - und die lernenden Algorithmen sorgen dafür, dass das in diesem Stil weitergeht. Das fängt bereits bei "kleinen" KI-Funktionen an, etwa im eigenen E-Mail-Postfach oder bei Tabellenkalkulationen. (fm)