Teil 3: Anwendungen und Plattformen

Machine Learning - die Technik

Heinrich Vaske ist Editorial Director von COMPUTERWOCHE und CIO. Seine wichtigste Aufgabe ist die inhaltliche Ausrichtung beider Medienmarken - im Web und in den Print-Titeln. Vaske verantwortet außerdem inhaltlich die Sonderpublikationen, Social-Web-Engagements und Mobile-Produkte und moderiert Veranstaltungen.
Welche Machine-Learning-Funktionen benötigen Unternehmen wofür? Und wann kommen welche Lernstile, Frameworks, Programmiersprachen und Algorithmen zum Einsatz? Meistens beginnen Firmen mit Bildanalyse und -erkennung.
  • Bild- und Spracherkennung sind die wichtigsten Anwendungen im Bereich Machine Learning
  • Geht es um die Plattformauswahl, wird die Public Cloud zunehmend wichtig
  • Grafikprozessoren setzen sich im Bereich Deep Learning durch

Wie die Analysten von Crisp Research im Rahmen einer umfassenden Studie gemeinsam mit The unbelievable Machine Company und Hewlett-Packard Enterprise (HPE) schreiben, gibt die Mehrheit der rund 250 befragten IT-Entscheider an, mit der Bildanalyse und -erkennung in das komplexe Thema Machine Learning (ML) einzusteigen. So werden beispielsweise in Industrieunternehmen Fremdkörper auf Förderbändern identifiziert, fehlerhafte Einfärbungen von Produkten entdeckt oder von autonomen Fahrzeugen Straßenschilder erkannt.

Diese Machine-Learning-Funktionen nutzen die Anwender.
Diese Machine-Learning-Funktionen nutzen die Anwender.
Foto: Crisp Research, Kassel

Wichtig sind ML-Verfahren auch zur Sprachsteuerung und -erkennung (42 Prozent). Eng damit verbunden sind Natural Language Processing und Textanalyse - also das semantische Erfassen von Sprachinhalten und Texten. Heute beschäftigen sich 35 Prozent der Unternehmen damit, Tendenz steigend. Hintergrund ist, dass konversationsbasierte Benutzerschnittstellen derzeit einen Aufschwung erleben.

Chatbots, Gesichtserkennung, Sentiment-Analyse und mehr

Machine Learning kommt außerdem bei rund einem Drittel der Befragten im Zusammenhang mit der Entwicklung digitaler Assistenten, sogenannter Bots zum Einsatz. Weitere Einsatzgebiete sind Gesichtserkennung, die Sentiment-Analyse und besondere Verfahren der Mustererkennung - oft in einem unternehmens- oder branchenspezifischen Kontext. Die Spracherkennung ist vor allem für Marketingentscheider interessant, da digitale Assistenten für die Automatisierung von Call-Center-Abläufen oder die Echtzeit-Kommunikation mit dem Kunden an Bedeutung gewinnen. Auch die Personalisierung von Produktempfehlungen ist ein wichtiger Use-Case.

Ein Blick auf die Nutzungsszenarien von ML-Technologien zeigt, dass Bildanalyse und -erkennung heute weit vorne rangieren, doch die Zukunft gehört eher der Sprachsteuerung und - erkennung, ebenso der Textanalyse und Natural Language Processing (NLP). Insgesamt werden ML-Technologien auf breiter Front an Bedeutung gewinne, auch etwa im Bereich der Videoanalyse, der Senitment-Analyse, der Gesichtserkennung sowie beim Einsatz intelligenter Bots.

Schaut man auf die einzelnen Unternehmensbereiche, so wird deutlich, dass sich die für Customer Experience Management zuständigen Einheiten ML-Technologien vor allem im Bereich der Kundensegmentierung, der personalisierten Produktempfehlung, der Spracherkennung und teilweise auch der Gesichtserkennung bedienen. IT-Abteilungen treiben damit E-Mail-Klassifizierung, Spam-Erkennung, Diagnosesysteme und das Klassifizieren von Dokumenten voran. Die Produktion ist vor allem auf Prozessverbesserungen aus, während Kundendienst und Support ihre Diagnoseysteme vorantreiben und an automatisierten Lösungsempfehlungen arbeiten. Auch Call-Center-Gespräche werden bereits analysiert, teilweise auch mit der Absicht, positive und negative Äußerungen der Kunden zu erkennen (Senitment-Analyse.

Auch die Bereiche Finance und Human Resources sowie das Management generell nutzen vermehrt ML-Technologien. Wichtigstes Einsatzgebiet sind hier das Risiko-Management sowie Forecasting und Prognosen. Im HR-Bereich werden auch Trainingsempfehlungen automatisiert erstellt, Lebensläufe überprüft und das Talent-Management vorangetrieben. Im zentralen Einkauf und dem Management der Lieferanten ist die Digital Supply-Chain-Verbesserung das Kernaufgabengebiet von ML-technologie. Vermehrt werden hier auch Demand Forecastings ermittelt, Risiken im Zusammenhang mit bestimmten Lieferanten analysiert und generell Entscheidungsprozesse digital unterstützt.

Machine-Learning-Plattformen und -Produkte

Geht es um die Auswahl von Plattformen und -Produkten, spielen Lösungen aus der Public Cloud eine zunehmend wichtige Rolle (Machine Learning as a Service). Um Komplexität aus dem Wege zu gehen und weil die großen Cloud-Provider auch die maßgeblichen Innovatoren auf diesem Gebiet sind, entscheiden sich viele Anwender für diese Cloud-Lösungen. Während 38,1 der Befragten Lösungen aus der Public-Cloud bevorzugen, wählen 19,1 Prozent proprietäre Lösungen ausgesuchter Anbieter und 18,5 Prozent Open-Source-Alternativen. Der Rest verfolgt entweder eine hybride Strategie (15,5 Prozent) oder hat sich noch keine Meinung dazu gebildet (8,8 Prozent).

Welche Cloud-Angebote zu Machine Learning sind im Einsatz?
Welche Cloud-Angebote zu Machine Learning sind im Einsatz?
Foto: Crisp Research

Unter den Cloud-basierten Lösungen hat AWS den höchsten Bekanntheitsgrad: 71 Prozent der Entscheider geben an, dass ihnen Amazon in diesem Kontext bekannt sei. Auch Microsoft, Google und IBM sind den Umfrageteilnehmern zu mehr als zwei Drittel im ML-Umfeld ein Begriff. Interessanterweise nutzen aber nur 17 Prozent der befragten die AWS-Cloud-Dienste im Kontext der Evaluierung, Projektierung sowie im produktiven Betrieb für ML. Jeweils rund ein Drittel der Befragten beschäftigt sich indes mit IBM Watson, Microsoft Azure oder der Google Cloud Machine Learning Plattform.

Die Analysten nehmen an, dass dies viel mit den Marketing-Anstrengungen der Hersteller zu tun hat. IBM und Microsoft investieren demnach massiv in ihre Cognitive- beziehungsweise KI-Strategie. Beide haben einen starken Mittelstands- und Großkundenvertrieb und ein großes Partnernetzwerk. Google indes verdanke seine Position dem Image als gewaltige daten- und Analytics-Maschine, die den Markt durch viele Innovationen treibe - etwa Tensorflow, viele ML-APIs und auch eigene Hardware. Schließlich zähle aber auch HP Enterprise mit "Haven on Demand" zu den relevanten ML-Playern und werde von 14 Prozent der Befragten genutzt.

Deep Learning ist schwieriger

Bereits in den 40er Jahren des vergangenen Jahrhunderts wurden die ersten neuronalen Lernregeln beschrieben. Die wissenschaftlichen Erkenntnisse wuchsen rasch, die Anzahl der Algorithmen ebenfalls - doch es fehlte an der notwendigen Rechenleistung, um "Rückgekoppelte Neuronale Netzwerke" in der Fläche zu nutzen. Heute sind diese unter dem Begriff Deep Learning in aller Munde, sie könnten Bereiche wie Handschriftenerkennung, Spracherkennung, maschinelles Übersetzen oder auch automatische Bildbeschreibungen revolutionieren.

Hintergrund ist, dass eine Präzision erreicht werden kann, die menschliche Fähigkeiten im jeweiligen Zusammenhang weit übertrifft. Dabei spannen neuronale Netze Ebenen von unterschiedlicher Komplexität auf. Je mehr Daten so einem neuronalen Netz zum Trainieren zur Verfügung stehen, desto besser werden die Ergebnisse beziehungsweise die trainierte Künstliche Intelligenz. So lernt ein System beispielsweise, wie anhand einer Computer-Tomografie Krebsgeschwüre diagnostiziert werden können, die das menschliche Auge nicht so einfach sieht.

Grafikprozessoren bieten die nötige Performance

Im Bereich des Deep Learning haben sich hardwareseitig Grafikprozessoren (GPUs) wegen ihre hohen Performance als besonders geeignet erwiesen. Förderlich waren außerdem die schier unbegrenzte Rechenpower, die sich aus den Public-Cloud-Ressourcen ergibt, sowie die Verfügbarkeit großer Mengen von Daten aus den verschiedensten Anwendungsgebieten. Unternehmen nutzen bereits Deep-learning-Algorithmen, im bestimmte Merkmal in Bildern aufzuspüren, Videoanalysen vorzunehmen, Umweltparameter beim autonomen Fahren zu verarbeiten oder automatische Sprachverarbeitung voranzutreiben.

In der Crisp-Umfrage geben 48 Prozent der Teilnehmer an, von Deep Learning zumindest gehört oder gelesen zu haben. Weitere 21 Prozent sind bereits in einer konkreten Evaluationsphase. Sie haben Erkenntnisse gesammelt und arbeiten nun an konkreten Prototypen, um ihr gewünschtes Einsatzszenario zu validieren. Weitere fünf Prozent sind sogar noch einen Schritt weiter und haben bereits Deep Learning im Einsatz. Vor allem Startups und Konzerne - auch hier wieder vor allem aus dem Automotive-Sektor - haben hier die Nase vorn.

Unter den Frameworks und Bibliotheken, die für das Implementieren von Deep-Learning-Algorithmen eine Rolle spielen, spielen unter anderem Microsofts "Computational Network Toolkit" (CNTK) sowie jede Menge Public-Cloud- und Open-Source-Lösungen eine Rolle (eine Übersicht gibt es hier http://deeplearning.net/software_links/). (hv)

Mehr zum Thema:

Teil 1: Machine Learning - darum geht's

Teil 2: Machine Learning - das haben deutsche Unternehmen vor