Why next-generation infrastructures need smarter silicon

11.10.2012

Smarter silicon in storage can also help close the data deluge gap. The storage I/O choke point is rooted in the mechanics of traditional hard disk drive (HDD) platters and actuator arms and their speed limits in transferring data from the disk media, as evidenced in the difference of five orders of magnitude in I/O latency between memory (at 100 nanoseconds) and Tier 1 HDDs (at 10 milliseconds).

Another limitation is the amount of memory that can be supported in traditional caching systems (measured in gigabytes), which is a small fraction of the capacity of a single disk drive (measured in terabytes). Both offer little room for performance improvements beyond increasing the gigabytes of (DRAM) in caching appliances or adding more of today's fast-spinning HDDs.

Solid state storage in the form of , on the other hand, is particularly effective in bridging this significant bottleneck, delivering high-speed I/O similar to memory at capacities on a par with HDDs. For its part, smart silicon delivers sophisticated wear-leveling, garbage collection and unique data reduction techniques to improve flash memory endurance and enhanced error correction algorithms for RAID-like data protection. Flash memory helps bridge both the capacity and latency gap between DRAM caching and HDDs.

Solid state memory typically delivers the highest performance gains when the flash cache acceleration card is placed directly in the server on the (PCIe) bus. Embedded or host-based intelligent caching software is used to place "hot data" in the flash memory, where data can be accessed in 20 microseconds -- 140 times faster than with a Tier 1 HDD, at 2,800 microseconds. Some of these cards support multiple terabytes of solid state storage, and a new class of solution now also offers both internal flash and Serial-Attached SCSI (SAS) interfaces to combine high-performance solid state and RAID HDD storage. A PCIe-based flash acceleration card can improve database application-level performance by five to 10 times in DAS and SAN environments.

Smart silicon is at the heart of all of these solutions. So without the deep inside view of the semiconductor vendors, the system vendors would have no hope of ever closing the data deluge gap.