Why next-generation infrastructures need smarter silicon

11.10.2012

Customized smart silicon can be a great option for a network equipment vendor wanting to carve out a unique competitive advantage by integrating its own optimizations. For example, a vendor's proprietary, differentiating intellectual property can be integrated into silicon to provide advantages over general-purpose processors, including for optimized baseband processing, deep packet inspection and traffic management. This level of integration requires close collaboration between network equipment and semiconductor vendors.

Tomorrow's data center network will need to be both faster and , and therefore, smarter than ever. One of the key challenges to overcome in virtualized mega data centers is control plane scalability. To enable cloud-scale data centers, the control plane needs to scale either up or out. In the traditional scale-up approach, additional or more powerful compute engines, acceleration engines or both are deployed to help scale up networking control plane performance.

In emerging scale-out architectures like (SDN), the control plane is separated from the data plane, and then typically executed on standard servers. In both scale-up and scale-out architectures, intelligent multicore communications processors that combine general-purpose processors with specialized hardware acceleration engines can dramatically improve control plane performance. Some functions, such as packet processing and traffic management, often can be offloaded to line cards equipped with these purpose-built communications processors.

While the efficacy of distributing the control and data planes remains an open question, it's clear that SDN will need smart silicon to deliver on its promise of scalable performance.