COMPUTERWOCHE-Roundtable Künstliche Intelligenz

Großes Potenzial trifft auf zögerliche Nutzer

Bernd Reder ist freier Journalist mit den Schwerpunkten Netzwerke, IT und Telekommunikation in München.
Maschinelles Lernen, Machine Learning und Künstliche Intelligenz (KI/AI) gelten als Schlüsseltechnologien, auf die künftig kaum ein Unternehmen verzichten kann. Das gilt vor allem für Branchen, die vom digitalen Wandel betroffen sind. Ein Teil der deutschen Unternehmen hat das sehr wohl erkannt, so eines der Ergebnisse eines Round Table der COMPUTERWOCHE zum Thema KI und Machine Learning.
KI hat bereits heute unseren Alltag stark verändert, wie etwa Smart Factory oder digitale Assistenzsysteme zeigen.
KI hat bereits heute unseren Alltag stark verändert, wie etwa Smart Factory oder digitale Assistenzsysteme zeigen.
Foto: Phonlamai Photo - shutterstock.com

Um Begriffe wie Künstliche Intelligenz, Maschinelles Lernen (ML) und Deep Learning (DL) hat sich ein regelrechter "Hype" entwickelt. Das zeigt sich alleine in den Prognosen von Marktforschern und Technologie-Unternehmen für 2018 und die folgenden Jahre. Doch wäre es verfehlt, KI und Co. als reines "Marketing-Blabla" abzutun.

"Um sich vor Augen zu führen, wie stark Künstliche Intelligenz bereits heute unseren Alltag verändert, genügt ein Blick auf drei zentrale Anwendungsbereiche: die Smart Factory, den Bereich des autonomen Fahrens und sowie Serviceassistenten und digitale Assistenzsysteme", betont Michaela Tiedemann, Chief Marketing Officer bei der Alexander Thamm GmbH. Das Beratungshaus aus München hat sich auf den Bereich Data Science spezialisiert.

KI und Machine Learning sind zudem das Herzstück von Chat-Bots und digitalen Assistenten, etwa Amazon Alexa, Googles Assistant, Apples Siri und Cortana von Microsoft. Solche digitalen Helfer halten mittlerweile auch im Geschäftsbereich Einzug. So kündigte Amazon im Herbst 2017 eine Business-Version von Alexa an. Damit können Mitarbeiter beispielsweise Besprechungen mit Kollegen ansetzen und den dazugehörigen Raum buchen.

Vom Chat-Bot zur Produktion

Generell gilt jedoch, dass Künstliche Intelligenz und Machine Learning in vielen Branchen und Einsatzbereichen zum Zuge kommen kann. "Ein Beispiel ist die vorausschauende Wartung, also Predictive Maintenance", sagt Bernd Gloss, Managing Solution Architect bei Capgemini in Stuttgart. "ML- und KI-Algorithmen können hier beispielsweise helfen, den Austausch von verbrauchten Werkzeugen gegen neue zu optimieren."

Informationen zu den Partnerpaketen für die KI/Machine-Learning-Studie

Laut Hendrik Nieweg, Head Solution Management bei Device Insight in München, nutzen viele Unternehmen im ersten Schritt Machine-Learning-Anwendungen, um sich mit der Thematik KI vertraut zu machen. "Ein Beispiel ist die Wartung von Maschinen. Im zweiten Schritt kommen neuronale Netze zum Einsatz. Maschinelles Lernen wird dann um die Automatisierung der Analysen ergänzt." Generell sei in Sachen KI bei Unternehmen ein ähnliches Umdenken zu beobachten wie bei Cloud-Computing.

»

Digitalisierungs-Event mit Fakten statt Floskeln

PredicTech ist ein neuartiges, auf den Ergebnissen der neuesten IDG-Studienprojekten basiertes Eventformat, das statt auf wolkige Digital-Floskeln auf Fakten setzt. Im Zentrum steht dabei nicht der Frontalvortrag, sondern fast ausschließlich interaktive Workshops, Live-Interviews und Podien. Diskutieren Sie am 20. September 2018 in München mit CIOs und Fachjournalisten über Digitalisierung und Themen wie den Arbeitsplatz der Zukunft, Talent & Skills, Cloud, Security oder Künstliche Intelligenz.

Jetzt registrieren!

"Ein Grund ist, dass Fertigungsunternehmen bereits im Rahmen von Industrie-4.0-Projekten Erfahrungen mit der Vernetzung von Maschinen gemacht haben." Zudem stoßen Nieweg zufolge Unternehmen bei der Optimierung von Prozessen an Grenzen, etwa in der Fertigung. "Daher ist es notwendig, sich mit disruptiven Technologien wie KI, Machine Learning und Deep Learning auseinanderzusetzen."

Auch in der Automobilindustrie und der Handelsbranche können Maschine Learning und KI Vorteile bringen, so die Teilnehmer des Round-Table. "Unternehmen in Deutschland, etwa aus dem Automobilsektor, führen seit einiger Zeit Tests mit KI-Anwendungen durch", erläutert etwa Christoph Angerer, Senior Developer Technologies Engineer (Deep Learning und Accelerated Computing) bei Nvidia. Das Unternehmen hat entsprechende Plattformen entwickelt, etwa für den Bereich autonomes Fahren. "Prototypen werden dabei oftmals in separierten IT-Umgebungen entwickelt, damit die zentralen IT-Systeme und Fertigungsanlagen nicht beeinträchtigt werden", so Angerer.

KI-Anwendungen im Handel bereits unverzichtbar

Ohne den Einsatz von KI- und ML-Systemen haben Handelshäuser kaum eine Chance, zu überleben. Diesen Standpunkt vertritt Jan Karstens, Chief Technology Officer bei Blue Yonder. Das Unternehmen aus Karlsruhe hat sich auf KI-Lösungen für den Einzelhandel spezialisiert. "Die Disposition von Waren zählt zu den Einsatzfeldern, in denen nach unseren Erfahrungen KI und maschinelles Lernen bereits heute unverzichtbar ist", betont Karstens, "Der Handel hat angesichts niedriger Margen und des harten Wettbewerbs keine andere Wahl."

Multiclient-Studie Künstliche Intelligenz (KI) und Machine Learning

Zu den Themen Künstliche Intelligenz (KI) und Machine Learning führt die COMPUTERWOCHE derzeit eine Multiclient-Studie unter IT-Entscheidern durch. Die Studie soll zeigen, wie deutsche Manager mit den Themen KI und Machine Learning derzeit in ihren Unternehmen umgehen. Haben Sie Fragen zu dieser Studie oder wollen Sie Partner werden, dann hilft Ihnen Frau Nicole Bruder (nbruder@idg.de, Telefon: 089 36086 122) gerne weiter. Informationen zur KI/Machine-Learning-Studie finden Sie auch hier zum Download.

Dass Unternehmen neue Technologien wie KI nicht aus eigenen Stücken implementieren, sondern weil die Marktsituation das erfordert, bestätigt Tobias Beuckes, RPA-Experte beim Beratungshaus Horváth & Partners Management Consultants in Stuttgart. Vor allem Branchen, deren Geschäftsumfeld sich drastisch geändert hat, setzen demnach auf moderne Technologien.

Dazu gehört beispielsweise die Finanzindustrie. Die Frage ist, wann auch die Geschäftsführung und die IT-Verantwortlichen in anderen Sparten die Unverzichtbarkeit solcher Technologien erkennen. Doch in dieser Beziehung hapert es offenkundig: "Kurzfristige Erfolge statt einer langfristigen Strategie - dieser Ansatz ist in den Chefetagen vieler Unternehmen in Deutschland zu beobachten", kritisiert Beuckes.

KI ist kein Selbstläufer

Damit spricht Beuckes einen wunden Punkt an. Denn es ist durchaus nicht so, dass deutsche Unternehmen in puncto KI und Machine Learning bestens aufgestellt sind: "Im Bereich KI und der Anwendung entsprechender Lösungen läuft Deutschland die Zeit davon", konstatiert Henning von Kielpinski, Vice President Business Development & Alliances bei der Consol Software GmbH in München. "Mitbewerber aus dem Ausland bieten bereits Zusatzdienste an, die auf KI und maschinellem Lernen basieren", so von Kielpinski weiter. Ein Hemmklotz sei zudem das langfristige Strategiekorsett, in dem viele Unternehmen stecken. "Die Folge ist, dass Führungskräfte nicht in der Lage sind, neue Zielrichtungen zu definieren, etwa im Bereich KI", bemängelt von Kielpinski.

Beim COMPUTERWOCHE-Round-Table zum Thema Maschine Learning und KI diskutierten Fachleute von Lösungsanbietern und Beratungshäusern über die Chancen und Hemmnisse beim Einsatz dieser Technologien.
Beim COMPUTERWOCHE-Round-Table zum Thema Maschine Learning und KI diskutierten Fachleute von Lösungsanbietern und Beratungshäusern über die Chancen und Hemmnisse beim Einsatz dieser Technologien.
Foto: Michaela Handrek-Rehle

Neben der "Strategie-Zwangsjacke" gibt es jedoch weitere Faktoren, die sich ungünstig auf die Umsetzung von KI-Projekten auswirken. So fehle es an "Leuchtturmprojekten", stellt Hendrik Nieweg von Device Insight fest. Ein Großteil der Unternehmen warte ab, welche Erfahrungen Mitbewerber oder Partner bei der Umsetzung von KI-Initiativen machten. "Das ist jedoch gefährlich, denn allzu schnell verpasst ein Unternehmen den richtigen Zeitpunkt, um auf den KI-Zug aufzuspringen", so Nieweg.

Glossar: Von Maschinellem Lernen bis zu KI

Künstliche Intelligenz (KI) oder Artificial Intelligence (AI): Dies ist der Oberbegriff, der auch Technologien wie maschinelles Lernen und Deep Learning umfasst. KI ist die Fähigkeit von Maschinen, wie Menschen zu denken und deren Verhalten zu imitieren. Das schließt das Treffen von Entscheidungen und das Verstehen von Sprache mit ein. KI-Anwendungen profitieren davon, dass heute die dazu erforderliche Rechenleistung zu akzeptablen Kosten zur Verfügung steht.

Maschinelles Lernen: Eine Definition der Stanford University besagt, dass Machine Learning Computer dazu bringt, sich in einer bestimmten Weise zu verhalten. Dies erfordert keine Programmierung durch einen Menschen. Die Grundlage bildet ein Lernprozess anhand von Beispielen. Nach dieser Lernphase ist ein System in der Lage, mithilfe des erworbenen Wissens vergleichbare Muster zu erkennen. Es wird zwischen überwachtem und nicht überwachtem Lernen unterschieden. Beim überwachten Modell "lernt" ein System anhand von Paaren von Eingaben und Ausgaben. Für jede Eingabe wird während der Trainingsphase die richtige Ausgabe zur Verfügung gestellt. Anschließend kann das System selbstständig aus einer Eingabe die passenden Ausgabewerte ermitteln.

Deep Learning setzt auf künstlichen neuronalen Netzen auf, die über mehrere Ebenen (Layer) verfügen. Eine Eingabewert passiert vieler solcher Layer, um einen Ausgabewert zu generieren. Erforderlich sind mindestens drei dieser Ebenen. Die entsprechenden Algorithmen extrahieren dabei Muster aus Rohdaten, etwa solchen, die von Sensoren erzeugt werden. Deep Learning kam unter anderem beim Training von Alpha Go zum Einsatz, einem Programm von Deep Mind. Es besiegte 2017 unter anderem den "menschlichen" Weltranglisten-Ersten im Go-Spiel und mehr als 60 Go-Profis.

Nicht ganz so kritisch bewertet dagegen Bernd Gloss die Lage. Der Mittelstand in Deutschland sei sich durchaus der Tatsache bewusst, dass Machine Learning und KI sowie das Internet der Dinge und digitale Zwillinge von Produkten und Systemen ("Digital Twins") Vorteile bringen könnten. "Das sehen auch die Führungskräfte in mittelständischen Unternehmen so", stellt der Fachmann von Capgemini fest. Doch auch Gloss räumt ein: "Unserer Erfahrung nach konzentrieren sich momentan viele Unternehmen darauf, existierende Prozesse mittels Industrie-4.0-Technologien zu verbessern. Beim Ausschöpfen aller anderen Möglichkeiten gehen sie noch sehr zaghaft vor."