Ensuring resiliency in wireless LANs

12.10.2012

Without this approach end users are forced to manually adjust (i.e., physically turn Wi-Fi off and back on again) their mobile devices to re-establish connectivity, resulting in unsatisfied Wi-Fi users and potentially increasing IT support costs. The easy test when you are evaluating WLAN gear -- the WLAN infrastructure should not disconnect any mobile devices after a redundancy failover event takes place.

A high-availability approach that does not drop devices will also deliver sustained connectivity for real-time mobile applications as well. Video streaming, and voice/video calling are all examples of applications where end users expect consistently reliable service and don't want to be asked to re-initiate a voice/video call. We've all experienced this frustration with dropped connections on cellular networks. As recovery times for WLANs decrease, real-time mobile applications have a greater chance to stay connected in case of network failures without requiring manual intervention by the end users.

Therefore, another valuable test would be to measure amount of time (and effort) it takes to recover any real-time application after a simulated failure within the redundant WLAN infrastructure.

It is important to mention that this type of resiliency should not come at an increased cost. Most WLANs support traditional N+1 redundancy where one controller offers protection for many others. This type of high-availability design reduces maintenance expenses, and provides significant cost savings in large-scale deployments.