Beispiele aus Unternehmen

Warum Big Data oft nutzlos ist

Christoph Lixenfeld, seit 25 Jahren Journalist und Autor, vorher hat er Publizistik, Romanistik, Politikwissenschaft und Geschichte studiert.

1994 gründete er mit drei Kollegen das Journalistenbüro druckreif in Hamburg, schrieb seitdem für die Süddeutsche Zeitung, den Spiegel, Focus, den Tagesspiegel, das Handelsblatt, die Wirtschaftswoche und viele andere.

Außerdem macht er Hörfunk, vor allem für DeutschlandRadio, und produziert TV-Beiträge, zum Beispiel für die ARD-Magazine Panorama und PlusMinus.

Inhaltlich geht es in seiner Arbeit häufig um die Themen Wirtschaft und IT, aber nicht nur. So beschäftigt er sich seit mehr als 15 Jahren auch mit unseren Sozialsystemen. 2008 erschien im Econ-Verlag sein Buch "Niemand muss ins Heim".

Seit 2014 betreibt er die Informationsplattform www.wohinmitmutter.de.

Christoph Lixenfeld schreibt aber nicht nur, sondern er setzt auch journalistische Produkte ganzheitlich um. Im Rahmen einer Kooperation zwischen Süddeutscher Zeitung und Computerwoche produzierte er so komplette Zeitungsbeilagen zu den Themen Internet und Web Economy inklusive Konzept, Themenplan, Autorenbriefing und Redaktion.
Viele Unternehmen sammeln Datenberge, ohne große Vorteile daraus zu ziehen. Sinnvoller wäre, Naheliegendes und seit Jahren Vorhandenes gezielter auszuwerten.

Dass diese ganze Big-Data-Geschichte noch nicht so reibungslos läuft, wie es die Theorie und die gut an dem Hype verdienenden Anbieter versprechen, wurde Anfang Februar mal wieder durch eine ebenso schlichte wie intelligente Frage deutlich.

Unternehmen wissen fast alles über Online-Kunden. Zu optimalen Angeboten führt das nicht.
Unternehmen wissen fast alles über Online-Kunden. Zu optimalen Angeboten führt das nicht.
Foto: ra2 studio - Fotolia.com

Gestellt wurde sie von Helmut Krcmar auf den Hamburger IT-Strategietagen. Der Professor für Wirtschaftsinformatik an der TU München moderiert die Veranstaltung gemeinsam mit CIO-Chefredakteur Horst Ellermann. Die Frage lautete: "Warum wird mir im Internet noch wochenlang nach dem Kauf eines Rollkoffers Rollkofferwerbung angezeigt?"

Vermutlich hatten sich fast alle Zuhörer im Saal diese Frage schon mal gestellt. Entsprechend gespannt waren sie auf die Antwort.

Die dann wenig befriedigend ausfiel: "Die Technologien werden immer besser, aber wir sind hier noch in den Anfängen", sagte Daniel Keller, Ex-CIO des Axel Springer-Verlags.

Vieles ist auch ohne Big Data möglich

Targeting, das Aufzeichnen, Speichern und Sortieren jener Spuren, die Millionen von Kunden und potentiellen Kunden bei ihrer Reise durch das Internet hinterlassen, ist eine klassische Big Data-Anwendung. Wobei das Prinzip an sich älter ist als der Begriff.

Digital Leader aufgepasst! - Foto: IDG

Digital Leader aufgepasst!

"Noch in den Anfängen zu sein" bedeutet deshalb weniger, dass die Macher erst in der vergangenen Woche angefangen haben. Sondern es heißt, dass auch nach jahrelangen Bemühungen datengetriebene Businessmodelle nicht so einfach funktionieren wie ein Zigarettenautomat, in den wir oben passendes Geld einwerfen und unten kommt genau das gewünschte Ergebnis - sprich die richtige Packung - heraus.

Die Sache mit dem Rollkoffer liegt vermutlich an der unter Maschinen weit verbreiteten "Algorithmusschwäche", also aus der Unfähigkeit, aus vielen gesammelten Informationen die richtigen Schlüsse zu ziehen.

Davon abgesehen sind es vor allem zwei Gründe, die dazu führen, dass Unternehmen nicht oder nicht genug von Big Data profitieren. Der erste: Sie kommen mit Hilfe von Datenanalyse zu Ergebnissen, die sie auch mit nicht ganz so big Data hätten haben können.

Vieles nicht in der Praxis umsetzbar

Big Data ist eine Marketingbezeichnung, die auch vieles einschließen möchte, was es schon vor mehr 15 Jahren gab.
Big Data ist eine Marketingbezeichnung, die auch vieles einschließen möchte, was es schon vor mehr 15 Jahren gab.
Foto: faithie - Fotolia.com

Die Harvard Business Review berichtet in diesem Zusammenhang von einem Finanzdienstleister, der mit Hilfe großer Datenmengen Modelle entwickelt hatte, mit denen sich der beste Platz für das Aufstellen von Geldautomaten ermitteln lässt. Nachdem sie damit fertig waren, stellten die Verantwortlichen durch einen Hinweis fest, dass es solche Modelle bereits seit Jahren gibt…

Der zweite: Big Data produziert Ergebnisse und Ideen, die sich aus was für Gründen auch immer in der Praxis nicht umsetzen lassen. So hatte ein großer US-Einzelhändler bei einem Modellversuch festgestellt, dass die Verkäufe ansteigen, wenn man ein Sonderangebotsprodukt schon eine Weile vor seiner Verbilligung in die Regale räumt und auch noch dort lässt, wenn der Angebotspreis nicht mehr gilt.

Um diesen Grundsatz aber in sämtlichen Filialen zu verwirklichen, hätte das Unternehmen seine gesamte Lieferkette umkrempeln müssen. Das wollte beziehungsweise konnte man nicht. Also war am Ende die Datenanalyse an dieser Stelle nutzlos.

Es geht nicht darum, möglichst aufwändig und umfangreich Daten auszuwerten und sich anschließend zu überlegen, was man damit machen will. Sondern darum, vorhandenes Wissen statt Bauchgefühl zur Grundlage von Entscheidungen zu machen.